Genomic Pathogen Typing Using Solid-State Nanopores.
نویسندگان
چکیده
In clinical settings, rapid and accurate characterization of pathogens is essential for effective treatment of patients; however, subtle genetic changes in pathogens which elude traditional phenotypic typing may confer dangerous pathogenic properties such as toxicity, antibiotic resistance, or virulence. Existing options for molecular typing techniques characterize the critical genomic changes that distinguish harmful and benign strains, yet the well-established approaches, in particular those that rely on electrophoretic separation of nucleic acid fragments on a gel, have room for only incremental future improvements in speed, cost, and complexity. Solid-state nanopores are an emerging class of single-molecule sensors that can electrophoretically characterize charged biopolymers, and which offer significant advantages in terms of sample and reagent requirements, readout speed, parallelization, and automation. We present here the first application of nanopores for single-molecule molecular typing using length based "fingerprints" of critical sites in bacterial genomes. This technique is highly adaptable for detection of different types of genetic variation; as we illustrate using prototypical examples including Mycobacterium tuberculosis and methicillin-resistant Streptococcus aureus, the solid-state nanopore diagnostic platform may be used to detect large insertions or deletions, small insertions or deletions, and even single-nucleotide variations in bacterial DNA. We further show that Bayesian classification of test samples can provide highly confident pathogen typing results based on only a few tens of independent single-molecule events, making this method extremely sensitive and statistically robust.
منابع مشابه
Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores.
Most experiments on nanopores have concentrated on the pore-forming protein α-haemolysin (αHL) and on artificial pores in solid-state membranes. While biological pores offer an atomically precise structure and the potential for genetic engineering, solid-state nanopores offer durability, size and shape control, and are also better suited for integration into wafer-scale devices. However, each s...
متن کاملQuantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores
5-hydroxymethylcytosine (5 hmC), the oxidized form of 5-methylcytosine (5 mC), is a base modification with emerging importance in biology and disease. However, like most epigenetic elements, it is transparent to many conventional genetic techniques and is thus challenging to probe. Here, we report a rapid solid-state nanopore assay that is capable of resolving 5 hmC with high specificity and se...
متن کاملPore Characterization and Event Detection in Solid-State Nanopores
Nanopores are used for DNA sensing. Solid-state nanopores, which are milled through a silicon-based substrate, lack the atomic-level gemoetric precision of biological proteinmediated pores. However, they show great promise due to their greater stability and potential for modification. We developed tools to characterize solid-state nanopores by using their resistance to infer a functional diamet...
متن کاملSensing Single Protein Molecules with Solid-State Nanopores
This chapter is focused on the development of experiments and theory of using solid-state nanopores for sensing single protein molecules in their native and unfolded states. Proteins serve diverse roles such as transport carriers, catalysts, molecular motors, cellular structural support, and others that make life possible. Because of these widely differing roles, proteins have an enormously div...
متن کاملComputational studies of DNA sequencing with solid-state nanopores: key issues and future prospects
Owing to the potential use for real personalized genome sequencing, DNA sequencing with solid-state nanopores has been investigated intensively in recent time. However, the area still confronts problems and challenges. In this work, we present a brief overview of computational studies of key issues in DNA sequencing with solid-state nanopores by addressing the progress made in the last few year...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 10 11 شماره
صفحات -
تاریخ انتشار 2015